
Camera Object detection with 3D Reconstruction

Bo Wu
University of California, Davis

bowu@ucdaivs.edu

Peng Shu Ming
University of California, Davis
shmpeng@ucdavis.edu

ABSTRACT
In camera calibration, the objective is to determine cam-
era parameters which describe the relationship between 3D
world coordinates and 2D image coordinates. We can utilize
the mapping formulation to determine coordination of the
object points. With the rising popularity of using computer
vision in smart phones, the performance of 3D reconstruc-
tion process by smart phones needs to be inspected and
verified. We implemented 3D reconstruction with camera
calibration on iOS device and inspect relationship between
reconstruction performance and numbers of taken images.

Categories and Subject Descriptors
[Camera Calibration]: Stereo Camera; [Software Engi-
neering]: Metrics—complexity measures, performance mea-
sures

General Terms
OpenCV

Keywords
Camera Calibration, OpenCV, C++, Objective-C, Galileo,
iPhone

1. INTRODUCTION
In computer vision, 3D reconstruction is the process of deter-
mining appearance and location of objects in world coordi-
nation. There are different kinds of techniques of completing
the reconstruction process [1]. For active method, it actively
interferes with the reconstructed object mechanically or ra-
diometrically to obtain the 3D model. The scanners emit
radiation or light to detect the beam reflection from the ob-
jects. There are limitations for the method. For example,
optical techniques are not able to examine the shiny objects
[2] and it is not feasible for modeling distant or fast-moving
objects [3]. For passive method, optical techniques are uti-
lized for recovering scene and reflectance characteristics from
images. A set of images are obtained by observing the object

from different viewpoints and illuminations to compute the
shape and reflectance at surface points [3]. The techniques
tend to be much more affordable compare to active methods.

In our project, we use camera calibration, a passive method,
as a technique to reconstruct 3D object points. To achieve
our object, we use iPhone 4s back facing camera, OpenCV,
an open source computer vision library, and Galileo. The
algorithm of camera calibration in OpenCV is based on [4].
In the report, we will first briefly describe information re-
garding camera calibration and then present implementation
steps and results. Section 2 describes the basic formulation
of camera calibration model and briefly discusses the cam-
era parameters. The parameters are utilized to obtain the
mapping between 3D world coordinates and 2D image coor-
dinates. Section 3 presents stereo camera being utilized in
the project and our implementation process is presented in
Section 3. Section 4 describes how we can the world points
by our process, and section 5 is the improvement of the pre-
vious work. Section 6 presents our experimental results by
implementing steps described in previous section.

2. CAMERA PARAMETERS
The camera parameters include internal camera parameter,
and extrinsic camera parameter. The internal camera pa-
rameter is called camera matrix.

2.1 Camera Calibration
The step of our project is finding the camera matrix of
iPhone. OpenCV has the sample code to calibrate the cam-
era. It uses the chess board and get the chess board corner
as world points. In the image, it can find the image points
corresponding to the chess board corner. The outputs of
the sample code are including the camera matrix, rotation
vector, translation vector, distortion coefficients, and the re-
projection error.

From the pin-hole camera model, the camera parameters are
the unknown variables, and the known variables are the im-
age points and world points. In each image, it has 49 pairs
of points, due to the chess board is 7 by 7. With multiple
images, there will be a lot of equations to solve the few un-
knowns.

2.2 Camera Calibration for iPhone



After running the Camera Calibration sample code, the next
step is finding the camera matrix of iPhone. Firstly, we tried
to adjust the OpenCV code to the Objective-C vision. How-
ever, we had some problems during converting code.

It requires multiple views in order to find the parameters.
However, iOS will handle the camera as different events,
which means the new event comes it will update the older
one and it cannot save it. We had trouble to save the new
images points and world points. In order to solve the cam-
era matrix and move on to the next step, we took multiple
images by iPhone and use the OpenCV code to solve the
camera matrix.

Because of the camera matrix depends on the image size.
The size we used is 480X640, and we will continue to use
this size for the next step. We took five different images of
chess boards,

3. STEREO CAMERA
The propose of our project is finding the object points in
the world. It is really hard to find the point by one camera.
The solution will be using the stereo camera. Stereo camera
requires two cameras. It simulates a pair of human eyes.
The position between those two cameras is including some
rotation and translation. This means that the first camera
rotates and translates by some numbers is the position of
the second camera.

In our project, we do not have two cameras to get the stereo
camera. The solution is using one camera to take multiple
images in the different positions. Those position have the
unknown rotations and translations. So that we constructed
a stereo vision with only one camera.

3.1 Capture Images
The next step is capturing the images from the iPhone cam-
era. We wrote a iPhone application to do that. The applica-
tion is based on the OpenCV iOS library and it is developed
in Objective-C. OpenCV has two kinds of camera: one is
image camera, the other is video camera. These two kinds
of camera can save the image or video as Mat format for
image processing and video processing. The application can
start the camera, capture images, and save the images.

We used the Galileo to rotate the cellphone in order to have
the stereo vision. Galileo is a pan/tilt rotation unit. It
can make the iPhone have a 360 degree view. We only use
the pan unit to rotation, so the cellphone can rotate in one
plane which can make the rotation and translation easier to
estimate. The application can also connect to Galileo and
control the Galileo’s pan rotate 5 degrees.

We took five images. The first image is defined as world
coordinate which means the rotation matrix is a identity
matrix, and the translation vector is 0. The next image will

be taken after the iPhone rotate 5 degrees. This will make
us easy to estimate the rotation and translation.

3.2 Rotation Matrix
In order to get the world coordinate points, we need to find
the projection matrix. The projection matrix is the product
of the camera matrix and the rotation matrix plus trans-
lation vector. The next step is finding the rotation matrix
and translation vector. There is a matrix called fundamen-
tal matrix between two image views which we will discuss
in the next section. From the fundamental matrix we can
get the translation and rotation between tow images by the
corresponding points in the two images of the same world
points.

The rotation matrix is easy to estimate. Because the cell-
phone is rotated by the Galileo, it is really easy to know the
rotation matrix.

In three dimensions the basic rotation is a rotation about
one of the axes of the coordinate system. There are three
kinds of the rotation matrix. They are listed as:

Rx(θ) =

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)



Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)



Rz(θ) =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


In our process, we choose the Rz as our estimation.

3.3 Translation Vector
The hardest part of this project is estimating the transla-
tion vector. The translation is between two images are the
movement from the first camera center to the second cam-
era center. It will be estimated by geometry. First thing we
need is the distance between the center of iPhone and the
center of iPhone camera. Because the Galileo holds iPhone
and rotates in the centre of iPhone, it is really necessary
to know the distance. After rotating the iPhone, we can
get triangle with two 2 cm sides, and an angle which is the
rotation angle. The translation is the movement from the
position of first camera to the position camera which is the
third side of the triangle. So we can obtain the translation
vector from that triangle.

The translation estimation figure shows how we estimate the
translation vector. All we need to find is the length of x and
z. Because in this rotation case, y is 0.



Figure 1: Image 1

The Translation estimation.

4. TRIANGULATION
After obtaining the camera matrix, rotation matrix, and
translation vector, we are able to get the projection matrix.
The triangulate function in OpenCV requires two projection
matrices, two corresponding points from two images as the
inputs, and the output 4D points as in the world coordinates.

For the triangulation, we used the first image and the fifth
image. Because between those two image, the rotation is
20 degree. This will make the rotation matrix have a lot
differents with the identity matrix and the translation vector
inclose to 0. Figure 1 and Figure 2 are the first image and
second image. There is a black dot in both images which we
draw on the table. We defined this point as the world point
that we need to find from triangulate.

Figure 2: Image 5

Because the first image is defined as the world coordinates,
this world point should in the line that is perpendicular to
the camera. This makes the x of this point is 0. The y of
this point is the height of iPhone 4s plus the Galileo which
we measured by rule is 14.8 cm. The z is the five times y.
We setting the world point this way will help us easy to get
the result.

5. FUNDAMENTAL MATRIX
Finding the fundamental matrix is the final step of our
project. OpenCV has the function called ”findFundamen-
talMat” The inputs of the function are the two projection
matrices from the two cameras, two sets of the corresponding
image points from two different views. It requires at least
seven points from one view and other seven points from the
other.

6. RESULT
In this section, we will discuss our results for each part, and
also the improvement of the results.

6.1 Camera Matrix
Because the image size is 480X640, the Cx = 240 and Cy =
320. The camera matrix we got is:

CameraMatrix =

542.517 0 239.5
0 542.517 319.4
0 0 1


From this camera matrix, we know the focal length of x and



y are the same. The image center is (239.5, 319.5). This is
satisfied the image size.

6.2 Rotation
The rotation angle is 20 degree, so the θ is 20 degree. The
rotation matrix just plug in the equation we presents previ-
ously.
The rotation matrix is:

RotationMatrix =

0.9396 −0.342 0
0.342 0.9343 0

0 0 1


6.3 Translation
The translation vector is the length of two sides of the right
triangle whose hypotenuse is the movement of the camera
centre. By geometry the length of two sides are 2×sin(20) =
0.684 and 2×(1−cos(20)) = 0.1206. So the translation vec-
tor is:
TranslationV ector =

[
0.1206 0 0.684

]

6.4 Triangulation
In order to get the triangulation work, we got the project
matrix by multiply camera matrix and rotation matrix plus
translation vector. These are the two projection matrix.

ProjectionMatrix1 =

542.517 0 239.5
0 542.517 319.5
0 0 1 0


ProjectionMatrix2 =

509.748 −185.540 239.5 229.245
185.540 509.7489 319.5 218.538

0 0 1 0.684


After that, all we need to do is plugging those parameters in
the function to get the world coordinates point. The output
is:
P =

[
−0.005 −0.1788 −0.9766 0.1189

]
After normalization the point is:
Pn =

[
−0.0431 −1.5045 −8.2141 1

]

6.5 Fundamental Matrix
All of our previous work is based on estimating the rotation
and translation. This will make our output point not close
to the correct result. in order to avoid this kind of error we
move on to the next step, our final step, using the funda-
mental matrix to get the rotation and translation from two
views. To get the fundamental matrix, we need to find at
least seven points from each image. We found eight points
and figure 3 show the eight points which show as the green
dots we found and figure 4 shows the corresponding points
in the image 5 which show as the red dots. The points in
the figure 3 are all on right side of the image, because after
rotating they will become on the left side of the image. We
measured all of sixteen points in pixel in order to plug them
in the function.

OpenCV has one function to solve the fundamental matrix,
but there are three kinds of algorithm implementation. We
tried all of them and get two different kinds of fundamental
matrix, and they are:

Figure 3: Image 1 with eight points

Figure 4: Image 5 with eight points



Table 1: Results of Eight Points
Point 1 Point1’ World Point

(244, 210) (30, 234) (-0.0106, 0.1847, -0.9277, 1)
(371, 234) (160, 239) (-0.2189, 0.1509, -0.9309, 1)
(417, 208) (202, 217) (-0.2684, 0.1777, -0.8451, 1)
(293, 94) (81, 89) (-0.0674, 0.2802, -0.6748, 1)
(284, 186) (83, 183) (0.15907, 0.28347, -0.81149, 1)
(334, 323) (126, 325) (0.1702, 0.2931, -0.8336, 1)
(418, 379) (204, 378) (0.1691, 0.2846, -0.8149, 1)
(425, 92) (210, 102) (0.143, 0.268, -0.7789, 1)

F1 =

 3.166e− 6 4.54e− 6 0.02
−3.456e− 6 3.12e− 8 0.017

−0.04 −0.00122 1



F2 =

−0.0005 ?0.0028 0.2807
0.00265 7.25e− 5 −07639
−0.0358 0.1978 1


Both of them are right. Because they are satisfied the defi-
nition of the fundamental matrix.

Next, we need to find the essential matrix which is equal to
the transpose of camera matrix times the fundamental ma-
trix times the camera matrix. We need to do the singular
value decomposition(SVD) for the essential matrix. Because
the essential matrix also equal to:
E = UΣV T

There are few properties about the essential matrix, The
first is Σ = diag(s, s, 0).
In our result, we got Σ =

[
3.15 2.94 0

]
, which has a little

bit errors. To get the rotation matrix we need to defined a
matrix:

W =

0 −1 0
1 0 0
0 0 1

 The rotation matrix is equal to R =

UWV t or R = UW tV t

The translation vector is equal to V = U3 or V = −U3

From these we can get the rotation, translation and projec-
tion matrix. So we can rerun the triangulatePoints to get
the world points of those eight points and the one we used
previously.
The first point is

[
−0.003 −0.1653 −0.9163 0.3646

]
After normalization is

[
−0.0092 −0.4535 −2.5131 1

]
. From

this result, x is close to 0, and z is five times of y. This shows
a really good result.
Table 1 shows the eights objects in the images points and
the world points from the triangulation.

The results are really hard to understand, because these
numbers doesn’t make sense at first time. However, look
them carefully, we can find out the first point has the almost
same x-value with the black dot we draw on table. Both of
their x value is close to 0. Point 1 and point 2 they are
on the same z plane, and their z-value are really similar.
In conclusion, if those point has some common value, for
example they are on the same plane, they will have one
value of their coordinate is the same.

7. ERRORS
Finally, we will talk about the errors we have in our projects.
The first error is from the estimation of rotation and transla-
tion. The rotation matrix is the basic rotation on 3D. This
is depends on the Galileo having a really perfect rotation
which we are not 100 percent sure. The translation is es-
timated from the geometry, which can have a really huge
error. Because everything we measure from a ruler. After
using the fundamental matrix, we can get some really rea-
sonable rotation and translation results.
However, there is an error we cannot avoid is finding the
image points. We found the image points by click from the
left top of the image to the object in the image, and the Pre-
view will show the image points in pixel unit. If my hand
shakes, the image point will have a 4 or 5 pixels error. From
figure 3 and figure 4, it is easy to see some object points are
not in the same position. I think this is the reason why the
essential matrix’s singular values have 0.2 different.

8. REFERENCES
[1] 3D reconstruction
http://en.wikipedia.org/wiki/3D reconstruction

[2] Cao-long HUYNH, ?How to improve the laser scanning of
shiny surfaces which can give unwanted reflections.? CVMT
Aalborg University: Department of Electronic System 2010.

[3] Seitz, S.M., ”An Overview of Passive Vision Techniques”
in Siggraph 99 Course on 3D Photography (1999).

[4] Z. Zhang., ?A Flexible New Technique for Camera Cal-
ibration? IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 22(11):1330-1334, 2000.

[5] Camera Calibration and 3D Reconstruction?OpenCV http://docs.opencv.org/modules/calib3d/doc/camera calibration and 3d reconstr
uction.html

[6] Geometric Camera Parameters
http://www.cse.unr.edu/ bebis/CS791E/Notes/CameraParameters.pdf

[7] Camera Calibration OpenCV
http://docs.opencv.org/trunk/doc/py tutorials/py calib3d/py calibration/py calibr
ation.html#calibration

[8] EpipolarGeometry OpenCV
http://docs.opencv.org/trunk/doc/py tutorials/py calib3d/py epipolar geometry/p
y epipolar geometry.html#epipolar-geometry


